Background: The findings of prior studies of air pollution effects on adverse birth outcomes are difficult to synthesize because of differences in study design.
Objectives: The International Collaboration on Air Pollution and Pregnancy Outcomes was formed to understand how differences in research methods contribute to variations in findings. We initiated a feasibility study to a) assess the ability of geographically diverse research groups to analyze their data sets using a common protocol and b) perform location-specific analyses of air pollution effects on birth weight using a standardized statistical approach.
Methods: Fourteen research groups from nine countries participated. We developed a protocol to estimate odds ratios (ORs) for the association between particulate matter ≤ 10 μm in aerodynamic diameter (PM10) and low birth weight (LBW) among term births, adjusted first for socioeconomic status (SES) and second for additional location-specific variables.
Results: Among locations with data for the PM10 analysis, ORs estimating the relative risk of term LBW associated with a 10-μg/m3 increase in average PM10 concentration during pregnancy, adjusted for SES, ranged from 0.63 [95% confidence interval (CI), 0.30–1.35] for the Netherlands to 1.15 (95% CI, 0.61–2.18) for Vancouver, with six research groups reporting statistically significant adverse associations. We found evidence of statistically significant heterogeneity in estimated effects among locations.
Conclusions: Variability in PM10–LBW relationships among study locations remained despite use of a common statistical approach. A more detailed meta-analysis and use of more complex protocols for future analysis may uncover reasons for heterogeneity across locations. However, our findings confirm the potential for a diverse group of researchers to analyze their data in a standardized way to improve understanding of air pollution effects on birth outcomes.
The international collaboration on air pollution and pregnancy outcomes: initial results.